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EXECUTIVE SUMMARY

In this work we explore the adaptation of convolutional autoencoders to complex-valued temporal
domain radio signals. We propose a method for accomplishing online semi-supervised learning with
a tied-weight convolutional autoencoder applied to a modulation classification task and provide some
initial results. We also demonstrate a novel application of class activation maps (CAMs) [1] to obtain
interpretable visualizations of modulation-discriminative temporal structure in input signals. Finally,
we show that our visualization method may be successfully applied to pre-trained models with neg-
ligible impact on classification performance on an automated modulation classification (AMC) task.
This work was done as part of the BIAS (Biologically Inspired Autonomous Sensing) project, funded
from the Naval Innovative Science and Engineering (NISE) Program.
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1. INTRODUCTION

The resurgence of deep neural networks has produced state-of-the-art advances in computer vision
and an increasing number of other problem domains. One of the central advantages of these models is
their ability to efficiently extract domain-specific features jointly when learning a predictive model. A
still outstanding limitation, however, is a comprehensive means of interpreting the representations and
latent statistical relationships learned by deep networks. In this work, we explore a particular class
of models Convolutional Autoencoders for unsupervised and semi-supervised feature learning. In the
later sections of this report, we also discuss a technique, Class Activation Maps, which compute the
class significance of input regions for the features learned by a neural network. This method provides
a means of interpreting the latent representations the network uses to make its predictions. We argue
that this is particularly important in the RF signal processing domain where the application of deep
neural networks is still in its infancy.

1.1 AUTOENCODERS

In this section, we review the general definition of autoencoders, summarize a few key concepts, 
and cast them in the context of modern deep learning. An autoencoder is an unsupervised neural-
network model that learns an encoding of inputs for feature extraction. In its most general form, an 
autoencoder is composed of an encoder network φ that maps inputs X to a latent space Z, and a de-
coder network ψ which attempts to reconstruct the input. Commonly, the objective function to be 
minimized by this class of models is simply the squared error between the input and its reconstruction, 
which is often referred to as the ’reconstruction loss’ Lrec = ||X − ψ ◦ φ(X)||2, where ||x||p is the p-
norm of a vector x.

A degenerate or otherwise unuseful case of an autoencoder is one that simply learns the identity 
function. Introducing a “bottleneck” into the model enforces non-identity solutions as well as learn-ing 
a compressed representation of the data. If X ∈ Rn and Z ∈ Rm and m < n, the encoder network is a 
dimensionality reduction of X. Additionally, if φ is parameterized by a weight matrix W and ψ = W 
T , this method is known as weight tying and has the desirable properties of reducing the parameter 
count and preventing disproportionate weights in the encoder and decoder pathways. Spe-cial cases of 
tied weight autoencoders also have interesting relationships to other unsupervised meth-ods. For 
instance, a linear model parameterized by the n × m weight matrix W trained to minimize Lrec posses 
a unique global optimum corresponding to the first m principal components (eigenvectors of the 
covariance matrix) associated with training exemplars [2].

Imposing sparse structure on Z prevents the model from learning the identity as well as improving
generalization and robustness to noise for various problems [3] [4]. This may be accomplished by im-
posing sparsity regularizations on Z by stochastically setting its elements to zero during training (also
known as dropout [5]) or a adding a sparsity term to the loss function, such as ||Z||1.

A stacked autoencoder is a model in which multiple, hierarchical latent representations are formed
by training each layer to reconstruct the output of the previous layer. In this paradigm, layer-wise
training is conducted by training the first layer `0 : X → Z0 and `T0 : Z0 → X 1 using the back-
propigation algorithm. Subsequent layers are then trained `k : Zk−1 → Zk, where Zk is the kth latent
representation.

1Here we assume tied-weights for simplicity; in subsequent definitions this is implied unless otherwise stated.

1



1.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) have been broadly applied to numerous problems in com-
puter vision and natural language processing. Generally, a CNN learns a hierarchically structured de-
composition of its input space as a set of convolutional filters. In supervised learning, as is commonly
the task of CNNs, the model may jointly learn a probabilistic mapping of these features to a set of se-
mantic concepts.

We will use the terms instance or example to refer to a particular input x ∈ X. A sample may refer 
to either a randomly drawn subset Xˆ ⊆ X or a single measurement xt in a particular instance and 
should be clear from context. Because much of the work in CNNs has been conducted in the com-
puter vision domain, much of the terminology and notation assumes c × w × h input where c is the 
color channel or feature dimension2 and w, h are the two dimensional spatial resolution of the input 
image. In the temporal radio-frequency domain, our signals are c × s where c is the number of chan-
nels and s is the number of samples per instance. Unless otherwise indicated, we define all operations 
(convolutions, downsampling, normalizations etc.) to operate across the last dimensions of the input 
signals, treating the c dimension as independent, which implies spatial and sample-wise operations in 
the image and RF domains respectively.

When discussing convolutions, we will use the terms feature, filter, and kernel more or less inter-
changeably. In the RF domain, we assume all kernels are 1 × k with a stride of s and padding p;
for images, we will often assume square inputs, square kernels, equivalent padding, and equivalent
strides across both axes. However, note that the definitions and many of the properties of the opera-
tions discussed generalize to non-square and N -dimensional cases [6].

1.3 CONVOLUTIONAL AUTOENCODERS

A convolutional autoencoder (CAE) is simply an autoencoder that incorporates model design prin-
cipals from CNNs. Models of this form have numerous applications, including deep-feature visual-
ization [7] dense prediction 3 [8], generative modeling [9] [10], and semi-supervised learning [11].
Additionally, our recent work has shown that CAEs may also be used for blind signal denoising 4.

The encoder of a CAE is a standard CNN; the structure of the decoder, however, is non-trivial. In 
classical autoencoders, where the encoder is simply a succession of matrix-vector products inter-
leaved with non-linear activation functions, an appropriate definition for the decoder follows naturally 
by adopting a “mirrored” structure. That is, the weights of each decoder layer learn to estimate the 
expected preimage of the corresponding transform in the encoder. However, the constraints imposed 
on convolutional network models leave the inverting structure of many common operations poorly 
defined. Many inverse operations have been proposed for common CNN layers, in particular, convo-
lutions and max pooling. Here we will highlight some of these emerging methods and discuss their 
advantages and limitations as well as provide motivation for the particular combination of methods 
we have found most useful.

2If the input to a particular operation is X, this is often referred to as a “channel”; if instead, the input to an operation is the 
output of some mapping, this may be referred to as a feature.
     3Also known as semantic segmentation in which every element of the input is assigned to a semantic category; for
Instance, labelling all the pixels that comprise a cat.
    4This work is documented in a technical report authored by Dr. Ben Migliori and is currently under review.
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1.3.1 Inverting Max Pooling

Pooling operations subsample a signal to produce a single output from subregions of the input. In
images, this is commonly implemented as non-overlapping rectangular blocks that are integrated by
taking the mean (mean pooling) or max (max pooling) of each region. Of the two methods, max pool-
ing is far more efficient to compute and more commonly used; for concision we only consider the lat-
ter method. Naive approaches to reversing the max pooling operation by interpolation have been ex-
plored extensively in [8] [11]. Advantages of this method are straightforwardness of implementation,
and the ability to perform the up-sampling without additional side information (as we will explore
in later methods). However, these interpolations can be costly to compute, as well as introducing di-
lations of the signal, which make it difficult for the model to reconstruct high-frequency details and
sharp transitions.

An alternative upsampling method is proposed in [12], which is easy to compute and reduces the 
degree to which the signal is blurred. Given a feature map F that has been pooled by some factor (n, 
m), a sparse upsampling is computed as the kroneker product F ⊗ M with a block matrix “mask” M ∈ 
{0, 1}n×m with a single non-zero entry (by convention this element is the upper left corner of the mask 
for two dimensional inputs). This method yields impressively sharp reconstructions for shal-low 
models and can estimate the pre-image of arbitrary image feature transforms (CNN, SIFT, HOG, etc.) 
without additional knowledge of their structure or mechanism [13]. However, it is discussed in [12] 
that this method is discarding available information from the encoder in the case of convolutional 
autoencoders. Further, Dosovitskiy observes that their models’ ability to reconstruct drops rapidly as 
a function of model depth.

A natural extension to max pooling is to define an operation that returns the argmax of each pool-
ing region, that is, the i, j coordinates of each maxima of a feature in the encoder in response to a 
particular input. To invert the max pool, it is then straightforward to construct a representation of the 
same dimension as the input with the maxima inserted at coordinates i, j and zeros elsewhere. This 
approximate inverse of the pooling operation, commonly referred to as “unpooling” [7], produces
a sparse upsampling as in [12] without discarding structural information by arbitrarily inserting the 
maxima. In the literature, the coordinates of the maxima are commonly referred to as switches or 
switch variables, and for consistency we will use these terms as well.

1.3.2 Inverting Convolutions

The notion of reversing convolutional neural networks was first introduced in [14] and termed a
projection operation by Matthew Zeiler in [7]. There has been much debate in recent literature as to
the appropriate name for Zeiler’s projection operation. Among these the terms deconvolution, trans-
pose convolution, upconvolution, fractionally strided convolution and backward strided convolution
have all been suggested. While these terms have varying degrees of clarity and validity, we adopt the
term transpose convolution for reasons that will become evident from our discussion.

Note that the filters used in the decoder may have their own parameters, as in [11], or share weights
with the corresponding filter in the encoder (harkening back to the notion of weight-tying in tradi-
tional autoencoders), as in [14] [7]. For the simplicity of the current discussion, we assume that the
transpose convolution has some complementary encoding convolution (tied weights), as we will ob-
serve this need not be the case.

Transpose convolutions can be understood from several different perspectives, all of which help to
justify the approach and clarify the mechanism. First, we consider transpose convolution as an inter-
polating filter. The unpooling operation produces a sparse activation map with the same dimension

3



Figure 1. Conceptual illustration of three approaches to inverting the Maxpool operation. (a.)
Nearest Neighbor interpolation produces a dense output that loses local structural information
from the input. (b.) Dosovitskiy’s method [12] produces a sparse output without additional infor-
mation, however as in interpolation methods informative local structure is lost. (c.) Unpooling
as suggested by Zeiler [14] sparse reconstructions of the input that preserve local structure
through the addition of argmax or switch variables.
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as the input to the corresponding max pool. Transpose convolution is a means of densifying, or more
explicitly, interpolating this sparse representation with a convolutional filter. As in inverting pooling,
a naive solution to accomplish this might be something like bilinear interpolation, where each ele-
ment of the upsampled output is computed as a linear combination of its neighbors. Unlike pooling,
convolutional layers contain learnable parameters of the model. Therefore, it would be desirable if
one could incorporate these weights into the interpolation, and further if the interpolation were (op-
tionally) non-linear.

Transpose convolution may also be thought of as fractionally strided convolution. In a more gen-
eral sense, consider the case of upsampling by some factor n this is equivalent to convolution with
a fractional input stride of 1

n
[15]. As illustrated in [6], given a convolution of some kernel of size k

with stride s ≥ 0, a transpose convolution may be equivalently be accomplished by padding each
output element with s− 1 zeros and performing a convolution with a filter of size k.

Finally, we consider transpose convolution in terms of the justification for its namesake, as a ma-
trix transpose, or more specifically, the transpose of a convolution represented as a matrix operation.
In the simple case of an input size n = 3, kernel size k = 2, s = 1, p = 0. We flatten the input into
a vector v = vec(x) ∈ Rn·n and arrange a Toeplitz matrix with constant non-zero entries along its
descending diagonal corresponding to the wij components of the filter:

W =

w00 w01 0 w10 w11 0 0 0 0
0 w00 w01 0 w10 w11 0 0 0
0 0 0 w00 w01 0 w10 w11 0
0 0 0 0 w00 w01 0 w10 w11

 . (1)

Now convolution with the desired kernel becomes a simple matrix multiplication v · W , which 
produces a vector v′ ∈ R4. Reshaping v′ into the desired 2 × 2 yields the convolved output. Now the 
explicit relationship between fully connected and convolutional autoencoders becomes obvious, 
transpose convolution is in fact W T . Further, as observed in [6], the transpose convolution is the gra-
dient of the corresponding convolution (satisfying certain conditions) for its input. In many modern 
machine learning libraries, the “forward pass” of a convolutional layer is computed using W and the 
“backward pass” (used for back propagation) is computed by W T . In practice, a transpose 
convolution may be implemented by simply swapping the forward and backward pass.
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2. METHODS

2.1 DATA

The test and training dataset consists of synthetically generated radio signals clean of outside in-
terference. We used the GNU Radio [16] software-defined radio (SDR) framework to construct the
modulations that generated this data.

A binary file, produced by randomly choosing byte values [0, 255], is the waveforms’ input. This 
binary data is modulated as in-phase and quadrature (I/Q) samples using each of six methods: on-off 
keying (OOK), Gaussian frequency-shift keying (GFSK), Gaussian minimum-shift keying (GMSK), 
differential binary phase-shift keying (DBPSK), differential quadrature phase-shift keying (DQPSK), 
and orthogonal frequency-division multiplexing (OFDM).

For each modulation, the samples are sent to a NuandTM BladeRFTM software-defined radio (SDR), 
where they are upconverted to the carrier frequency. The SDR is configured in RF loop-back mode, 
such that the RF signal is sent and received only within the device’s circuitry, and not to an external 
antenna. This arrangement provides added realism by incorporating the upconversion and radio ef-
fects, but without unwanted third-party signals that could pollute the controlled testing.

The signal sampling rate is set so that the number of samples per symbol (NSpS ) is consistent for 
every modulation type, except for OFDM. In contrast with the other modulation techniques, OFDM 
encodes data on multiple carrier frequencies simultaneously, within the same symbol, and modu-
lates each carrier frequency independently. Our experiment used an existing OFDM signal processing 
component that operates with a symbol rate different than the other configurations, but with the same 
sample rate. This rate is identical for both the transmission and reception of the signal. The received 
RF signal is down-converted at the radio and the resulting I/Q samples are stored for analysis.

The data files need to be arranged into a format and structure for use by our neural network. The
I/Q data are split into segments consisting of NSpV samples, or samples per vector. A segment is
composed of interleaved I/Q values for each sample, forming a vector of length 2×NSpV . Thus, each
vector contains NSpV

NSpS
symbols. These vectors are placed into two sets, train and test (sizes NV train

and NV test), such that both the modulation type and positions within the set are random. The param-
eter NSpV is identical for each modulation type for all experiments described in this report. The spe-
cific values of all parameters are shown in Table 1.

Table 1. Data generation parameters.

Description Parameter Value
Samples per symbol NSpS 10
Samples per vector NSpV 225
Number of training vectors NV train 60000
Number of training vectors per modulation NVmod 10000
Number of test vectors NV test 10000

2.2 ADDITION OF NOISE

To assess the performance of our system with a more realistic channel model, we altered the test
data set with additive white Gaussian noise (AWGN). AWGN was added to each set of signal modu-
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lation types such that for each set the resulting signal-to-noise ratio (SNR) matched a given value. For
each of these signal modulation sets, {Smod}, the added noise power, Pnoise is:

Pnoise(mod) = β · 1

Ns(mod)

∑
{Smod}

1

τ

τ∑
t=1

[st]
2, (2)

where Ns(mod) is the number of sample vectors for a particular modulation, st is an individual sig-
nal sample vector of length τ , and β is a factor chosen such that 10 log(P{S}/Pnoise) matches the de-
sired SNR. Note that all modulations exhibited similar transmitted power, with the exception of OOK,
which was slightly larger.

2.3 SEMI-SUPERVISED LEARNING

In [11], it was illustrated that a convolutional autoencoder may be used to accomplish online semi-
supervised learning by casting the problem as multi-task leaning. This paradigm is motivated by the
observation that a fully unsupervised autoencoder may be used to perform a non-linear dimension-
ality reduction in the encoder. If a classifier is trained on the features learned by φ, this provides a
means of incorporating unlabeled data into a classification task. Further, both these objectives may
be optimized jointly to perform semi-supervised learning in an online setting. This particular model is
referred to as a Stacked What-Where Autoencoder (SWWAE).

In an SWWAE, the encoder is composed of convolutions and max-pooling operations, and the de-
coder is composed of unpooling operations and convolutions without tied weights. The model is trained 
to jointly reconstruct its input using an l2 loss and classify using negative log-likelihood. To enforce 
pre-image estimation at each layer of the model, an l2 norm is added to the loss function between the 
input to each encoder convolution and its reconstruction in the decoder.

The method we propose is similar though distinct from [11] in that our model uses a tied weight
convolutional transpose operation in the decoder. Advantages of this method are that it requires half
the number of trainable parameters of a SWWAE; this is motivated by a desire to reduce the compu-
tational complexity of the model and, ideally, regularize the model to reduce the degree of overfitting
during training.

2.4 VISUALIZING DISCRIMINATIVE LOCALIZATION

Feature representations learned by deep neural networks are often difficult to analyze and notori-
ously challenging to debug. The low-level representations that commonly appear in vision tasks have
been broadly documented and are relatively well-understood. For instance, CNNs have been shown
to learn color patch and edge-detecting filters in early layers of the network topology [14]. Recently,
methods for visualization and interpretation of higher level features have been proposed and applied
successfully in computer vision [17]. These methods demonstrate that the latent concepts learned
by popular models such as AlexNet [18] and VGG16 [19] include filters sensitive to texture patches,
global geometric structure, and other low-frequency spatial information.

Increasingly, methods originally developed for computer vision problems have been adapted to the
analysis of time domain radio signals [4] [20]. It is inevitable that the advancement of RF spectrum
neural networks will be faced with similar model interpretation challenges to those experienced in
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computer vision. Therefore, we argue that the application of the feature visualization methods pio-
neered in the context of vision tasks may be similarly applied to the related challenge of feature learn-
ing and interpretation in digital signal processing.

One such visualization is a class activation map (CAM) that produces a class-conditional heatmap 
over the network’s input. CAMs are a recent technique [1] for obtaining class-conditional saliency 
maps from a convolutional neural network (CNN). A CAM indicates the discriminative regions of 
an input signal the CNN uses to identify a particular category. Our method utilizes a global average 
pooling (GAP) layer that outputs a vector of sample-wise average5 activations for each feature; the 
alternative, and conventional method for mapping features to categories is to flatten6 to a feature 
vector and learn a dense mapping from this arbitrary feature arrangement to categories using a 
softmax classifier. An undesirable property of the feature flattening method is that the weight matrix 
mapping features to classes is a black-box, in that the arrangement of its entries is not meaningful. 
This arbitrary arrangement makes the correlation between a particular feature and a class label diffi-
cult to discern directly. GAP enables an interpretable alternative with minimal performance cost and 
the added benefit of a sample-wise regularization which, we have observed, eliminates the need for 
dropout to prevent overfitting in most cases.

GAP outputs a vector whose elements are the sample-wise mean for each filter. Given a feature
map fk(·), which produces some output with k features and s samples, GAP simply averages across
the sample dimension gk = 1

s

∑s
t fk(xt) for some input x for each of the k features. We then learn

a single linear transform ω with shape k × c, where c is the number of target categories. Notice that
the rows of of this weight matrix correspond to the average response of the feature set for a particular
class.

To obtain a class activation map Mc for a particular class c, we may simply take a weighted feature-
wise sum across the output channels of the layer preceding the GAP with each feature weighted by
the corresponding ωck:

Mc(x) =
∑
k

ωckfk(x). (3)

In essence, GAP aggregates its output sample-wise by averaging, and CAM aggregates feature-
wise by summing across features weighted by ω. If we repeat this procedure for each class, and then
normalize by the max of the CAM, we obtain a heat-map of size c × s. The CAM may then be up-
sampled to the original input sample size to have obtain an approximate one-to-one correspondence
between category salience of each sample in the input. This method has been similarly applied in im-
ages with minimal variation from the algorithm we describe [1].

Optionally, one may also use the CAM method on some arbitrary feature set, that is, without train-
ing an entire model with a GAP-based classifier. In our procedure, we trained a CNN in the usual way
using a dense mapping from a flattened feature vector. We then froze the weights 7 of the learned fea-
tures and replaced the classifier with a GAP and softmax and learned this mapping.

52-D spatial average in the case of images
6Concatenate all activations into a single vector
7Weight freezing refers to a method of prevent the weight update step of the backpropigation algorithm, usually for a

subset of model components to allow fine-tuning of some other part.
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3. RESULTS

In general, this work adheres to the experimental protocol for the AMC task proposed in [4], which
serves as the foundation for our inquiry; this paradigm is implemented as a mapping of a sequence of
in-phase quadrature (IQ) measurements generated by a software-defined radio to a probability distri-
bution over modulation classes.

3.1 TRAINING SNR EVALUATION

Training CNNs on RF data raises the unique question of determining an optimal training SNR, 
that is, we would like our models to generalize to out of sample noise power, which may or may not 
be the SNR on which we trained. To study this question, we trained a collection of CNNs on varying 
SNRs {−5, 0, 5, 10, 20} dB.

Our results illustrate that low-positive SNRs yield the best performance under AWGN. In the rest
of our experiments we set the training SNR for all modulations to 5 dB, as models trained at this noise
level have been observed to provide the best classification performance on this dataset.

Figure 2. Influence of training noise on model generalization to varying evaluation SNR.

3.2 SEMI-SUPERVISED LEARNING

Unsurprisingly, the predominant effect in these experiments was the quantity of labeled training 
data. However, we did not observe a clear and consistent trend in the performance of models trained 
with varying amounts of labeled data as we had predicted. We hypothesize that this may be due to 
high sensitivity to model initialization on this dataset. Further, we conjecture that it may be possible 
for multiple objectives to “compete” or dominate one another in a multi-task learning setting. This is
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motivated by our observation that the reconstruction loss consistently converges smoothly to an 
optimum, whereas the classification loss exhibits higher variance during training when unlabeled 
exam-ples are incorporated in the training set.

Figure 3. Example results of incorporating variable ratios of labeled and unlabeled examples
into the semi-supervised training of a CAE

3.3 CLASS ACTIVATION MAPS

In the following experiments we adopt a protocol similar to [1] in which the authors used several 
popular pre-trained models, which they adapted to produce CAMs by replacing the fully connected 
layer with a GAP. Because there are not yet any off-the-shelf models for modulation classification, we 
simply trained a normal CNN and used the aforementioned procedure to transfer to a GAP layer. We 
also trained several randomly initialized models that utilized a GAP layer and noticed no significant 
difference in performance or in the CAMs produced by the two approaches.

In the following sections we will use the term significance to refer to learned association of a par-
ticular feature to a class. Recall that this is a well-defined quantity ωck, learned by the weight ma-
trix mapping the sample-wise average of feature k to a class c. Observe the relative response of the 
network to the correct modulation class as well as the non-target classes. In these diagrams, the 
two-dimensional I/Q is shown above with the corresponding CAMs for each class below. Each 
CAM is a time-domain heatmap showing the class-significance weighted sum of feature activations 
in re-sponse to the input.

The CAMs for on-off keying (OOK) modulated signals show a clear response to the characteristic
square waveform of the target class. The CAMs also show positive response on the same interval to
classes whose signals possess similar plateau structure in the temporal domain. Note that the sharp
transitions on the edges of each symbol are not perceived as strong discriminators for this class, rather
they produce low-positive response for OFDM and only show strong significance to the OOK class if
the signal is held relatively constant for a relatively longer interval. Conversely, signals that are char-
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Figure 4. Class activation maps for an OOK modulated signal.

acterized by high-frequency zero crossings (such as GMSK and GFSK) produce low or negative re-
sponse in the feature mapping to the OOK class.

In the case of Gaussian frequency shift keying (GFSK), the CAM for the target class exhibits a
strong sustained response in approximately the first 100 samples of the signal. Note the significance
of this structure arises from the particular sustained frequency for that symbol; noting that other mod-
ulation types which contain higher frequencies with a similar amplitude in both channels (such as
GMSK) do not produce high activations on this interval in the corresponding CAM. Similarly, mod-
ulations which are dominated by lower frequencies (such as DQPSK) produce negative values of al-
most equal magnitude to the GFSK CAM.

Of equivalent value to illustrating where CNNs are successfully learning the class-significant fea-
tures of data are interpreting the failure cases of such models. The CAM method we propose is well
suited for this type of model debugging as well. For instance, a surprising result of this study is that
in the case of GFSK, the network assigns much lower significance to samples corresponding to one
symbol versus another. Because the data consist of randomly generated binary sequences, where both
symbols are equally likely, this cannot be a reflection of learning the class conditional probability
one symbol versus another. A more likely explanation is that in the representation the network has
learned, one of the symbols is closer than the other to examples of non-target classes in feature space.
Slightly more explicitly, consider a case were we subdivide a particular GFSK example g ∈ G ⊂
X , and produce new examples ĝ0, ĝ1 grouped by symbol and project them into the feature space our
CNN has leaned. Given a clustering of non-GFSK data with means µ0...µc−1, some appropriate dis-
tance metric d and some small positive ε we hypothesize that 1

c−1
∑c−1

i=0 d(ĝ0, µi)+ε <
1
c−1

∑c−1
i=0 d(ĝ1, µi)

for all GFSK examples G. Though we do not conduct an inquiry into this claim here, it is important to 
note that this analysis could not be intuited without discriminative localization.
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Figure 5. Class activation maps for a GFSK modulated signal.

In Figure 6, we illustrate the impact of noise on discriminative localization using class activation 
maps. It has been observed, originally in [4] and consistent with our experiments, that neural net-
work automated modulation classification (AMC) models tend to over-predict GMSK and OFDM at 
low SNR at the expense of other categories. Intuitively, AWGN introduces deviations from the un-
derlying signal that may lead its statistics to match more closely to those of GMSK. If our model has 
learned features that are sensitive to these characteristics, segments of signals that have similar statis-
tics should show high activation for these two classes. In this example we observe that although the 
model correctly predicts the DQPSK target class, the CAMs for OFDM, OOK, and GMSK are all 
highly active. For OOK we observe that a positive plateau in the signal leads to high activation for the 
corresponding CAM and samples below zero in both channels lead to negative values as this has not 
been observed in the training data for OOK. Additionally, there are shear transitions between the seg-
ment of the signal with high significance for GMSK versus OFDM, suggesting as before a sensitive 
geometric relationship between the way the model represents OFDM and GMSK.

A final valuable attribute of our CAM method is that the secondary fine tuning of the GAP-based
classifier has little to no impact on overall classification performance. Perfect classification accuracy
on the held-out test set may be obtained with a standard CNN when no noise is added to the signal.
If we then replace the softmax classifier with a GAP layer in the method previously described, after
training, only a few examples are misclassified and the model retains 99.9% accuracy. Further, a ran-
domly initialized model with a GAP classifier obtains equivalent performance to a conventional CNN
if features are learned jointly with classification.
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Figure 6. Class activation maps for a DBPSK modulated signal with 5-dB SNR.
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4. CONCLUSION

Although this work is by no means the first to define an technique for inverting convolutional neu-
ral networks using unpooling and transpose convolutions, we feel that there is not, to the best of our
knowledge, an authoritative and approachable explanation of the method. In our background sections
we sought to deconflict the oft confusing terminology surrounding transpose convolution and sum-
marize the equivalence of several algorithms for its computation that have been independently proved
elsewhere. Our aim has been to provide a single document that would allow the implementation of
the most challenging parts of a convolutional autoencoder without the need for an extensive literature
review. Further, we have laid the groundwork for future research applying CAEs to the RF spectrum
for unsupervised feature learning and denoising. Finally, we have offered a solution to a key limita-
tion of CNN feature interpretation in the RF domain by demonstrating a novel application of class
activation maps.
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